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We analyse the problem of solving Boolean equation systems through the use of structure graphs.
The latter are obtained through an elegant set of Plotkin-style deduction rules. Our main con-

tribution is that we show that equation systems with bisimilar structure graphs have the same

solution. We show that our work conservatively extends earlier work, conducted by Keiren and
Willemse, in which dependency graphs were used to analyse a subclass of Boolean equation sys-

tems, viz., equation systems in standard recursive form. We illustrate our approach by a small

example, demonstrating the effect of simplifying an equation system through minimisation of its
structure graph.
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1. INTRODUCTION

A Boolean equation system [Larsen 1993; Mader 1997] — equation system for short
— is a sequence of fixed-point equations, in which all equations range over the
Boolean lattice. The interest in equation systems has both practical and theoretical
origins.

Equation systems have been used as a uniform framework for solving traditional
verification problems such as the celebrated model checking problem [Mader 1997]
and a variety of behavioural equivalence checking problems, see [Mateescu 2003;
2006; Chen et al. 2007]; this has led to effective tooling, see e.g. [Garavel et al.
2007; Groote et al. 2009]. The size of the resulting equation system is dependent
on the input and the verification problem: for instance, the global µ-calculus model
checking problem L |= φ, where L is a state space and φ a formula can be made to
yield equation systems EL(φ) of size O(|L| · |φ|), where |L| is the size of the state
space and |φ| the size of the modal formula. As a result, the encoding to equation
systems suffers from a phenomenon akin to the state space explosion problem.

From a theoretical stance, the problem of solving an equation system is intrigu-
ing: it is in NP ∩ co-NP, see, e.g. [Mader 1997]. In fact, the problem of solving an
equation system is equivalent to the problem of computing the winner in a Parity
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Game [Zielonka 1998]. The latter has been shown to be in UP ∩ co-UP, see [Jur-
dziński 1998]. This makes the problem of solving an equation system a favourable
candidate for finding a polynomial time algorithm, if it exists. Currently, the al-
gorithm with the best worst-case time complexity for solving Parity Games, and
thereby equation systems, is the bigstep algorithm [Schewe 2007]. This algorithm
has running-time complexity O(n · md/3), where n corresponds to the number of
vertices, m to the number of edges and d to the number of priorities in the Parity
Game (or equivalently, the number of equations, the cumulative size of the right-
hand sides and the number of fixed-point sign alternations in an equation system,
respectively).

The running-time complexity of the algorithms for solving equation systems pro-
vides a practical motivation for investigating methods for efficiently reducing the
size of equation systems. In the absence of notions such as a behaviour of an
equation system, an unorthodox strategy in this setting is the use of bisimulation
minimisation techniques. Nevertheless, recent work [Keiren and Willemse 2009]
demonstrates that such minimisations are practically cost-effective: they yield mas-
sive reductions of the size of equation systems, they do not come with memory
penalties, and the time required for solving the original equation system signifi-
cantly exceeds the time required for minimisation and subsequent solving of the
minimised equation system.

In ibid., the minimisations are only obtained for a strict subclass of equation
systems, viz., equation systems in standard recursive form (SRF). The minimisa-
tion technique relies on a bisimulation minimisation for a variation of dependency
graphs [Mader 1997; Keinänen 2006] underlying the equation systems in SRF. Such
graphs basically reflect the (possibly mutual) dependencies of the equations in an
equation system in SRF. It is noteworthy that the transformation of an equation
system into SRF (henceforth referred to as the process of normalising) is a linear-
time process.

From a practical viewpoint, the class of equation systems in SRF does not pose
any limitations to the applicability of the method: normalising an equation system
does not change the solution to the proposition variables of the original equation
system, and the transformation comes at the cost of only a linear blow-up in size.
Its effects on the minimising capabilities of bisimulation, however, are unknown,
leading to the first question:

1. What is the effect of normalising an equation system on the minimising ca-
pabilities of bisimulation? In other words: how does the size of the bisimulation
quotient of an equation system compare to the size of the bisimulation quotient of
its normalised counterpart?

We answer this question in favour of the process of normalisation: the size of the
quotient of the normalised equation system will be at most the size of the quotient
of the original equation system (see Theorem 4.6). In addition, we provide an ex-
ample (see Example 4.7) in which the quotient is strictly smaller in size.

It is well-known that the modal µ-calculus is preserved under bisimulation min-
imisation of the behavioural state space. As the size of the BES encoding a model
checking problem is proportional to the size of the state space, minimising the
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state space prior to verification (by whatever global method) can be a useful pre-
computation step, provided that the state space is available (in some methodolo-
gies, BESs are generated from symbolic state spaces, see e.g. [Groote and Willemse
2005]). However, it is unknown whether state space minimisation and minimisation
of equation systems encoding a model checking problem are comparable, see also
the picture below.

L L′

E ′

E E ′′

↔

|= φ

|= φ

↔

?

This naturally leads to the second question:

2. Do bisimilar states in a state space give rise to bisimilar equations in the
equation systems encoding model checking problems?

The answer to this question is stated by Proposition 6.2, confirming that pairs
of bisimilar states in some state space L induce equations in E that can also be
related through an appropriate bisimulation relation underlying the equation sys-
tem encoding the model checking problem L |= φ. This result remains valid when
considering ‘safe’ abstractions on the original state space. This is shown in The-
orem 6.6. We moreover provide an example, see Example 6.7, in which we show
that the bisimulation reduction of equation systems can be arbitrarily larger than
the reduction of state spaces, even in the presence of safe abstractions.

The main problem in obtaining our results, and answering the above questions,
is that it is hard to elegantly capture the structure of an equation system, without
resulting in a parse-tree of the equation system. As a matter of fact, bisimilarity is
required to reflect associativity and commutativity of Boolean operators such as ∧
and ∨ in order to obtain our aforementioned second result; this cannot be achieved
using parse-trees. In addition, the arbitrary nesting levels of Boolean operators
in equation systems complicate a straightforward definition of bisimilarity for such
general equation systems. We solve these issues by using a set of deduction rules
in Plotkin style [Plotkin 2004] to map the equation systems onto structure graphs.
The latter generalise the aforementioned dependency graphs by dropping the re-
quirement that each vertex necessarily represents a proposition variable occurring
at the left-hand side of some equation and adding facilities for reasoning about
Boolean constants true and false, and unbound variables.

Related Work. Various types of graphs for equation systems have appeared in
the literature. We review some of the more relevant types of graphs below.

Boolean Graphs are introduced in [Andersen 1994], in an attempt to use graphs
for representing the (implicit) equation systems (in simple form), underlying model
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checking problems obtained by verifying µ-calculus formulae on state spaces. Equa-
tions are represented by vertices, and dependencies on variables are represented by
the edges. In addition, each vertex is labelled with either ∨ or ∧, representing
the fact that the right-hand side of the equation is disjunctive or conjunctive, re-
spectively. On the basis of the graph representation, Andersen describes the first
on-the-fly model checking algorithm for alternation-free equation systems.

The on-the-fly techniques by Andersen are generalised to the full modal µ-calculus
in [Liu et al. 1998]. The graphs underlying the latter approach, called Partitioned
Dependency Graphs, generalise Andersen’s Boolean Graphs, by considering hyper-
edges from vertices to sets of vertices. [Liu and Smolka 1998] proposes an im-
provement over the latter approach for the special case of alternation-free equation
systems, using dependency graphs. The latter simplify the Partitioned Dependency
Graphs, and, at the same time, generalise the Boolean Graphs of Andersen, giving
rise to simpler equation system resolution algorithms. In addition, Liu and Smolka
show that their dependency graphs are useful for solving Horn clauses.

Keinänen extends the Boolean Graphs of Andersen by decorating each vertex, in
addition to the labelling with ∧ or ∨, with a natural number that abstractly repre-
sents the fixed-point sign of the equation, see [Keinänen 2006]. Also these graphs
are referred to as dependency graphs. In [Keiren and Willemse 2009], the latter type
of graphs is used to investigate two notions of bisimulation, viz., strong bisimula-
tion, and a weakened variation thereof, called idempotence-identifying bisimulation,
and their theoretical and practical use for minimising equation systems in SRF.

The dependency graphs of Keinänen are closely related to Parity Games (see
e.g. [Zielonka 1998]) and the games proposed by Stirling (see e.g. [Stirling 1997;
Stevens and Stirling 1998]), in which players aim to win an infinite game. It has
been shown on several occasions that the latter problem is equivalent to solving an
equation system. Stirling’s game graphs were implemented in various tools, most
notably in the Concurrency Workbench.

Simulation relations for Parity Games have been studied in, among others [Fritz
and Wilke 2006]. Finally, we mention the framework of Switching Graphs [Groote
and Ploeger 2009], which have two kinds of edges: ordinary edges and switches,
which can be set to one of two destinations. Switching Graphs are more general
than the dependency graphs of [Keinänen 2006], but are still inadequate for directly
capturing the structure of the entire class of equation systems. Note that in the
Switching Graph setting, the v-parity loop problem is equivalent to the problem of
solving Boolean equation systems.

The current paper extends and improves upon preliminary work presented in [Re-
niers and Willemse 2010]. The structure graphs, introduced in ibid., and further
studied in this paper, generalise the discussed graphs by being capable of repre-
senting arbitrary nestings of ∧ and ∨ in the right-hand sides of the equations, and
providing the facilities to reason about equation systems with free variables and
constants. The main sources of inspiration for structure graphs are the Stirling and
Parity Games, and the dependency graphs of Keinänen.

Outline. For completeness, in Section 2, we briefly describe the formal settings,
illustrating the model checking problem and how this problem can be translated
to the problem of solving an equation system. Section 3 subsequently introduces
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structure graphs and the deduction rules for generating these from an equation
system. Our main results are presented in Sections 4–6. An application of our
theory can be found in Section 7. Section 8 summarises our results and outlines
future work.

2. PRELIMINARIES

Henceforth we assume the existence of two sufficiently large, disjoint, countable sets
of proposition variables X and X̃ .

2.1 The Modal µ-Calculus

Labelled transition systems provide a formal, semantical model for the behaviour
of a reactive system. While, in this paper, we are mostly concerned with Boolean
equation systems, our work is motivated by the model checking problem, i.e., the
problem of deciding whether a given behavioural specification satisfies a temporal or
modal formula. For this reason, we first repeat some basic results from the latter
setting and illustrate its connection to the problem of solving Boolean equation
systems.

Definition 2.1. A labelled transition system is a three-tuple L = 〈S ,Act,→〉,
consisting of a finite, non-empty set of states S , a finite, non-empty set of actions
Act and a transition relation →⊆ S ×Act× S .

We visualise labelled transition systems by directed, edge-labelled graphs. In line
with this graphical notation, we write s a−→ s′ if and only if (s, a, s′) ∈→. The
de facto behavioural equivalence relation for labelled transition systems is strong
bisimilarity, see [Park 1981].

Definition 2.2. Let L = 〈S ,Act,→〉 be a labelled transition system. A symmetric
relation R ⊆ S × S is a strong bisimulation if for all (s, s′) ∈ R

∀a ∈ Act, t ∈ S : s a−→ t =⇒ ∃t′ ∈ S : s′ a−→ t′ ∧ (t, t′) ∈ R

States s, s′ ∈ S are bisimilar if and only if there is a bisimulation relation R that
relates states s and s′.

The propositional modal µ-calculus, see [Kozen 1983] is a highly-expressive lan-
guage for analysing behaviours that are defined through a labelled transition sys-
tem. We refrain from going into details, but solely present its grammar and seman-
tics below. For an accessible treatment of the modal µ-calculus, we refer to [Brad-
field and Stirling 2001].

Definition 2.3. Let Act be a finite set of actions. The set of modal µ-calculus for-
mulae is defined through the following grammar, which is given directly in positive
form:

φ, ψ ::= true | false | X̃ | φ ∧ ψ | φ ∨ ψ | [A]φ | 〈A〉φ | νX̃.φ | µX̃.φ

where X̃ ∈ X̃ is a proposition variable; A ⊆ Act is a set of actions; µ is a least fixed
point sign and ν is a greatest fixed point sign. Throughout this paper we write σ
to denote an arbitrary fixed point sign µ or ν.
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Note that our use of generalised modal operators [A]φ and 〈A〉φ is merely for rea-
sons of convenience, and has no implications for the presented theory in this paper.
Henceforth, we write [a]φ instead of [{a}]φ and [a]φ instead of [Act \ {a}]φ.

In a formula σX̃.φ, each occurrence of the variable X̃ is bound. A variable X̃ is
bound in a formula φ if all its occurrences are bound. The set of bound proposition
variables in φ is denoted bnd(φ); the set of proposition variables that syntactically
occur in φ is denoted occ(φ). Formula φ is said to be closed if and only if occ(φ) ⊆
bnd(φ). We only consider µ-calculus formulae φ that are well-formed, i.e.:

(1) there are no two distinct subformulae of φ that bind the same proposition
variable;

(2) for every free proposition variable X̃ ∈ occ(φ) \ bnd(φ), no subformula σX̃.ψ
(binding X̃ locally), occurs in φ.

The well-formedness requirement is a technicality and does not incur a loss of gen-
erality of the theory.

Modal µ-calculus formulae φ are interpreted in the context of a labelled transition
system and an environment θ : X̃ → 2S that assigns sets of states to proposition
variables. We write θ[X̃ := S ′] to represent the environment in which X̃ receives the
value S ′, and all other proposition variables have values that coincide with those
given by θ.

Definition 2.4. Let L = 〈S ,Act,→〉 be a labelled transition system and let θ :
X̃ → 2S be a proposition environment. The semantics of a µ-calculus formula φ is
defined inductively as follows:

[[true]]θ = S
[[false]]θ = ∅
[[X̃]]θ = θ(X̃)
[[φ ∧ ψ]]θ = [[φ]]θ ∩ [[ψ]]θ
[[φ ∨ ψ]]θ = [[φ]]θ ∪ [[ψ]]θ

[[[A]φ]]θ = {s ∈ S | ∀s′ ∈ S : ∀a ∈ A : s a−→ s′ =⇒ s′ ∈ [[φ]]θ}
[[〈A〉φ]]θ = {s ∈ S | ∃s′ ∈ S : ∃a ∈ A : s a−→ s′ ∧ s′ ∈ [[φ]]θ}
[[νX̃.φ]]θ =

⋃
{S ′ ⊆ S | S ′ ⊆ [[φ]]θ[X̃ := S ′]}

[[µX̃.φ]]θ =
⋂
{S ′ ⊆ S | [[φ]]θ[X̃ := S ′] ⊆ S ′}

The global model checking problem, denoted L, θ |= φ, is defined as the question
whether for all states s ∈ S of a given labelled transition system L = 〈S ,Act,→〉,
we have s ∈ [[φ]]θ, for given formula φ and environment θ. The local model checking
problem, denoted L, s, θ |= φ, is the problem whether s ∈ [[φ]]θ for a given state
s ∈ S . Often, one is only interested in closed formulae. Small examples of typical
model checking problems can be found in the remainder of this paper.

2.2 Boolean Equation Systems

A Boolean equation system is a finite sequence of least and greatest fixed point
equations, where each right-hand side of an equation is a proposition formula. For
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an excellent, in-depth account on Boolean equation systems, we refer to [Mader
1997].

Definition 2.5. A Boolean equation system (BES) E is defined by the following
grammar:

E ::= ε | (νX = f ) E | (µX = f ) E
f , g ::= true | false | X | f ∧ g | f ∨ g

where ε is the empty BES; X ∈ X is a proposition variable; and f , g are proposition
formulae.

We only consider equation systems that are well-formed, i.e., equation systems E ,
in which a proposition variable X occurs at the left-hand side in at most a single
equation in E .

In line with the notions of bound and occurring proposition variables for µ-
calculus formulae, we introduce analogue notions for equation systems. Let E be
an arbitrary equation system. The set of bound proposition variables of E , denoted
bnd(E), is the set of variables occurring at the left-hand side of the equations in E .
The set of occurring proposition variables, denoted occ(E), is the set of variables
occurring at the right-hand side of some equation in E .

An equation system E is said to be closed whenever occ(E) ⊆ bnd(E). Intuitively,
a (closed) equation system uniquely assigns truth values to its bound proposition
variables. An equation system is said to be in simple form [Arnold and Crubille
1988] if none of the right-hand sides of the equations that occur in the equation
system contain both ∧- and ∨-operators. If such an equation system, in addition,
has no occurrences of the constants true and false in its right-hand sides, it is said
to be in standard recursive form [Keiren and Willemse 2009].

Proposition variables occurring in a proposition formula f are collected in the
set occ( f ). The rank of a proposition variable X ∈ bnd(E), notation rankE(X), is
defined as follows:

rank(σY= f )E(X) =

{
rankE(X) if X 6= Y
blockσ(E) otherwise

where blockσ(E) is defined as:

blockσ(ε) =

{
0 if σ = ν
1 otherwise

blockσ((σ′Y = f )E) =

{
blockσ(E) if σ = σ′

1 + blockσ′(E) if σ 6= σ′

Informally, the rank of a variable X is the i-th block of like-signed equations, con-
taining X’s defining equation, counting from right-to-left and starting at 0 if the
last equation is a greatest fixed point sign, and 1 otherwise.

Formally, proposition formulae are interpreted in the context of an environment
η:X → B. For an arbitrary environment η, we write η[X := b] for the environment
η in which the proposition variable X has Boolean value b and all other proposition
variables X′ have value η(X′). The ordering v on environments is defined as η v η′

if and only if η(X) implies η′(X) for all X. For reading ease, we do not formally
distinguish between a semantic Boolean value and its representation by true and
false; likewise, for the operands ∧ and ∨.
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Definition 2.6. Let η:X → B be an environment. The interpretation [[ f ]]η maps
a proposition formula f to true or false:

[[X]]η = η(X)

[[true]]η = true [[ f ∧ g]]η = [[ f ]]η ∧ [[g]]η

[[false]]η = false [[ f ∨ g]]η = [[ f ]]η ∨ [[g]]η

The solution of a BES, given an environment η, is inductively defined as follows:

[[ε]]η = η

[[(σX = f ) E ]]η =

{
[[E ]](η[X := [[ f ]]([[E ]]η[X := false])]) if σ = µ
[[E ]](η[X := [[ f ]]([[E ]]η[X := true])]) if σ = ν

We refer to [Mader 1997, Section 3.2] for an explanation of the nature of this defi-
nition. A solution to an equation system verifies every equation, in the sense that
the value at the left-hand side is logically equivalent to the value at the right-hand
side of the equation. At the same time, the fixed-point signs of left-most equations
outweigh the fixed-point signs of those equations that follow, i.e., the fixed-point
signs of left-most equations are more important. The latter phenomenon is a result
of the nested recursion for evaluating the proposition f of the left-most equation
(σX = f ), assuming an extremal value for X. As a consequence, the solution is
order-sensitive: the solution to (µX = Y) (νY = X), yielding all false, differs from
the solution to (νY = X) (µX = Y), yielding all true. It is exactly this tree-like
recursive definition of a solution that makes it intricately complex.

Closed equation systems enjoy the property that the solution to the equation
system is independent of the environment in which it is defined, i.e., for all envi-
ronments η, η′, we have [[E ]]η(X) = [[E ]]η′(X) for all X ∈ bnd(E). For this reason, we
henceforth refrain from writing the environment explicitly in all our considerations
dealing with closed equation systems, i.e., we write [[E ]], and [[E ]](X) instead of the
more verbose [[E ]]η and [[E ]]η(X).

The following lemma relates the semantics for open equation systems to that of
closed equation systems. We write E [X := b], where X /∈ bnd(E) and b ∈ {true, false}
is a constant, to denote the equation system in which each syntactic occurrence of
X is replaced by b.

Lemma 2.7. Let E be an equation system, and let η be an arbitrary environment.
Assume X /∈ bnd(E) is a proposition variable, and let b be such that η(X) = [[b]].
Then [[E ]]η = [[E [X := b]]]η.

Proof. We show this by induction on the size of E . The base case for E = ε
follows immediately. As our induction hypothesis, we take

∀η, b, X /∈ bnd(E) : [[b]] = η(X) =⇒ [[E ]]η = [[E [X := b]]]η (IH)

Assume our induction hypothesis holds for E , and let η and b be such that [[b]] =
η(X). Consider the equation system (νY = f ) E , and assume X /∈ bnd((νY = f ) E).
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Using the semantics of equation systems, we reason as follows:

[[(νY = f )E ]]η
= [[E ]]η[Y := [[ f ]]([[E ]]η[Y := true])]
=2×IH [[E [X := b]]]η[Y := [[ f ]]([[E [X := b]]]η[Y := true])]
=‡ [[E [X := b]]]η[Y := [[ f [X := b]]]([[E [X := b]]]η[Y := true])]
= [[((νY = f ) E) [X := b]]]η

where at ‡, we have used that [[ f ]]η = [[ f [X := b]]]η for [[b]] = η(X). The case for
(µY = f ) E follows the exact same line of reasoning and is therefore omitted.

Finally, we introduce some generic shorthand notation. The operators
d

and⊔
are used as shorthands for nested applications of ∧ and ∨. Formally, these are

defined as follows. Let l be a total order on X ∪ {true, false}. Assuming that l
is lifted to a total ordering on formulae, we define for formula f l-smaller than all
formulae in a finite, non-empty set F ( f 6∈ F):

l
∅ = true

l
{ f} = f ∧ f

l
({ f} ∪ F) = f ∧

(l
F
)

⊔
∅ = false

⊔
{ f} = f ∨ f

⊔
({ f} ∪ F) = f ∨

(⊔
F
)

Note that the duplication introduced by this definition does not have any semantic
influence.

In a similar fashion, we define an equation system obtained from a set of equa-
tions. Let X = f be an equation, where f is a proposition formula and X is a
proposition variable. Assuming that X is l-smaller than all left-hand side variables
in the equations in a finite set of equations E, we define:

σ{X = f} = (σX = f ) σ({X = f} ∪ E) = (σX = f )σE

2.3 Boolean Equation Systems for Model Checking

An obvious strategy for solving a typical model checking problem is through the use
of Tarski’s approximation schemes for computing the solution to the fixed points
of monotone operators in a complete lattice, see e.g. [Tarski 1955]. More advanced
techniques employ intermediate formalisms such as Boolean equation systems for
solving the verification problem.

Below, we provide the translation of the model checking problem to the problem
of solving a Boolean equation system. The transformer E reduces the global model
checking problem L, η |= φ to the problem of solving an equation system.

Definition 2.8. Assume L = 〈S ,Act,→〉 is a labelled transition system. Let φ be
an arbitrary modal µ-calculus formula over Act. Suppose that for every proposition
variable X̃ ∈ occ(φ) ∪ bnd(φ), we have a set of fresh proposition variables {Xs | s ∈
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S } ⊆ X .

EL(b) = ε

EL(X̃) = ε
EL( f ∧ g) = EL( f ) EL(g)
EL( f ∨ g) = EL( f ) EL(g)
EL([A] f ) = EL( f )
EL(〈A〉 f ) = EL( f )

EL(σX̃. f ) = (σ{(Xs = RHSs( f )) | s ∈ S }) EL( f )

RHSs(b) = b
RHSs(X̃) = Xs

RHSs( f ∧ g) = RHSs( f ) ∧ RHSs(g)
RHSs( f ∨ g) = RHSs( f ) ∨ RHSs(g)

RHSs([A] f ) =
d
{RHSt( f ) | a ∈ A, s a−→ t}

RHSs(〈A〉 f ) =
⊔
{RHSt( f ) | a ∈ A, s a−→ t}

RHSs(σX̃. f ) = Xs

Observe that the definition of E provided here coincides (semantically) with the
definition given in [Mader 1997] for modal µ-calculus formulae φ; the only devia-
tion is a syntactic one, ensuring that the [ ] and 〈 〉 modalities are mapped onto
proposition formulae with ∧, and ∨ as their main logical connectives in case there
is a non-empty set of emanating transitions.

The relation between the original local model checking problem and the problem
of solving a Boolean equation system is stated by the theorem below.

Theorem 2.9 [Mader 1997]. Assume L = 〈S ,Act,→〉 is a labelled transition
system. Let σX̃. f be an arbitrary modal µ-calculus formula, and let θ be an arbitrary
environment. Then:

L, s, θ |= σX̃. f if and only if ([[EL(σX̃. f )]]η)(Xs) = true

where for all proposition variables Yt ∈ {Zs | s ∈ S ∧Z̃ ∈ occ(σX̃. f )∪bnd(σX̃. f )}, we
set η(Yt) = true if and only if t ∈ θ(Ỹ), and false for all other proposition variables.

Informally, the theorem expresses that a state s satisfies a modal µ-calculus formula
σX̃. f if, and only if the associated proposition variable Xs in the equation system
EL(σX̃. f ) has true as its solution. The environment η ensures that free proposition
variables are correctly dealt with. The correspondence between the global model
checking problem and the solution to an equation system then follows immediately
from the latter’s correspondence to the local model checking problem.

The example below illustrates the above translation and theorem.

Example 2.10. Consider the labelled transition system (depicted below), mod-
elling mutual exclusion between two readers and a single writer.

s0 s1 s2s3

rs rs

rerews

we

Reading is started using an action rs and action re indicates its termination. Like-
wise for writing. The verification problem νX̃.µỸ . 〈rs〉X̃ ∨ 〈rs〉Ỹ, modelling that on
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some path, a reader can infinitely often start reading, translates to the following
equation system using the translation E:

(νXs0 = Ys0) (νXs1 = Ys1) (νXs2 = Ys2) (νXs3 = Ys3)
(µYs0 = (Xs1 ∨ Xs1) ∨ (Ys3 ∨ Ys3))
(µYs1 = (Xs2 ∨ Xs2) ∨ (Ys0 ∨ Ys0))
(µYs2 = false ∨ (Ys1 ∨ Ys1))
(µYs3 = false ∨ (Ys0 ∨ Ys0))

Observe that, like the original µ-calculus formula, which has mutual dependencies
between X̃ and Ỹ, the resulting equation system has mutual dependencies between
the indexed X and Y variables. Solving the resulting equation system leads to true
for all bound variables; Xsi = true, for arbitrary state si, implies that the property
holds in state si. Furthermore, note that the right-hand sides of the resulting
equation system can be rewritten using standard rules of logic, removing, e.g., all
occurrences of false. It is not hard to check that this does not affect the solution to
the equation system.

3. STRUCTURE GRAPHS FOR BOOLEAN EQUATION SYSTEMS

A large part of the complexity of equation systems is attributed to the mutual
dependencies between the equations. These intricate dependencies are neatly cap-
tured by structure graphs. In Section 3.1, we define how a structure graph can be
obtained from a formula in the context of an equation system. In Section 3.2, we
define how an equation system can be associated with a structure graph assuming
that it satisfies some well-formedness constraints.

Definition 3.1. Given a set of proposition variables X . A structure graph over
X is a vertex-labelled graph G = 〈T, t,→, d, r,↗〉, where:

—T is a finite set of vertices;

—t ∈ T is the initial vertex;

—→⊆ T × T is a dependency relation;

—d:T 7→ {N,H,>,⊥} is a vertex decoration mapping;

—r:T 7→ IN is a vertex ranking mapping;

—↗ :T 7→ X is a free variable mapping.

A structure graph can be used to capture the dependencies between bound vari-
ables and (sub)formulae occurring in the equations of such bound variables. Intu-
itively, the decoration mapping d reflects whether the top symbol of a proposition
formula is true (represented by >), false (represented by ⊥), a conjunction (repre-
sented by N), or a disjunction (represented by H). The vertex ranking mapping
r indicates the rank of a vertex. The free variable mapping indicates whether a
vertex represents a free variable. Note that each vertex can have at most one rank,
at most one decoration ? ∈ {N,H,>,⊥}, and at most one free variable ↗X. We
sometimes write t to refer to a structure graph 〈T, t,→, d, r,↗〉, where t is in fact
the initial vertex of the structure graph.

We define the size of a structure graph G = 〈T, t,→, d, r,↗〉 as |G| = |T |, i.e., the
size of a structure graph is the number of vertices in the graph.

One can easily define bisimilarity on structure graphs.
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Definition 3.2. Let G = 〈T, t,→, d, r,↗〉 and G′ = 〈T ′, t′,→′, d′, r′,↗′〉 be struc-
ture graphs. A relation R ⊆ T × T ′ is a bisimulation relation if for all (u, u′) ∈ R

—d(u) = d′(u′), r(u) = r′(u′), and ↗ (u) =↗′ (u′);
—for all v ∈ T , if u→ v, then u′ →′ v′ for some v′ ∈ T ′ such that (v, v′) ∈ R;

—for all v′ ∈ T ′, if u′ →′ v′, then u→ v for some v ∈ T such that (v, v′) ∈ R.

Two vertices u and u′ are bisimilar, notation u↔ u′ if there exists a bisimulation
relation R such that (u, u′) ∈ R.

Using this notion of bisimilarity, we also define the bisimulation quotient of a
structure graph.

Definition 3.3. Let G = 〈T, t,→, d, r,↗〉 be a structure graph. The bisimulation
quotient G/↔ = 〈T ′, t′,→′, d′, r′,↗′〉 of G is defined as follows:

—T ′ = T/↔ = {[ti]/↔ | ti ∈ T} with [ti]/↔ = {t j ∈ T | ti↔ t j};
—t′ = [t]/↔ ;

—→′ is defined by:
ti → t j

[ti]/↔ →′ [t j]/↔
—d′([ti]/↔ ) = d(ti), if ti ∈ dom(d), and undefined otherwise;

—r′([ti]/↔ ) = r(ti), if ti ∈ dom(r), and undefined otherwise;

—↗′ ([ti]/↔ ) =↗ (ti), if ti ∈ dom(↗), and undefined otherwise.

3.1 Structured Operational Semantics for equation systems

Next, we define structure graphs for arbitrary equation systems E and proposition
formulae t. We use Plotkin-style Structural Operational Semantics [Plotkin 2004]
to associate a structure graph with a formula f in the context of a equation system
E , notation 〈 f , E〉. The deduction rules define a relation → and predicates t n
(for n ∈ IN), ↗X (for X ∈ X ), >, ⊥, N, and H. In the deduction rules also
negative premises are used, see [Mousavi et al. 2005] for an overview.

The notations used in the deduction rules are slightly different from those used
in the structure graphs. The predicate t ↗X represents ↗ (t) = X, the predicate
t t n represents r(t) = n, for ? ∈ {N,H,>,⊥}, t? represents d(t) = ?. The notation
t 6t represents ¬(t t n) for all n ∈ IN.

First, as we are dealing with possibly open equation systems, free variables are
labelled as such:

(1)
X ∈ occ(E) \ bnd(E)

〈X, E〉 ↗X

In addition, vertices representing bound proposition variables are labelled by a
natural number representing the rank of the variable in the equation system:

(2)
X ∈ bnd(E)

〈X, E〉 t rankE(X)

In Boolean equation systems, the right-hand sides are built up of binary conjunc-
tions and disjunctions. A question that needs to be answered is ‘How to capture
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this structure in the structure graph?’ One way of doing so would be to precisely
reflect the structure of the proposition formula. For a formula of the form X∧(Y∧Z)
in the context of an empty equation system this results in the first structure graph
depicted below:

〈X ∧ (Y ∧ Z), ε〉 N

〈X, ε〉 ↗X

〈Y ∧ Z, ε〉 N

〈Y, ε〉 ↗Y

〈Z, ε〉 ↗Z

〈(Y ∧ X) ∧ Z, ε〉 N

〈Y ∧ X, ε〉 N

〈Y, ε〉 ↗Y

〈Z, ε〉 ↗Z

〈X, ε〉 ↗X

A drawback of this solution is that, in general, the logical equivalence between
X ∧ (Y ∧ Z) and (Y ∧ X) ∧ Z (see the second structure graph above) is not reflected
by bisimilarity. Retaining this logical equivalence (and hence associativity and
commutativity) of both conjunction and disjunction is desirable.

The logical connectives for conjunction (∧) and disjunction (∨) may occur nested
in a formula. This is solved by reflecting a change in leading operator in the
structure graph. So the anticipated structure of the structure graph for X ∧ (Y ∧
(Z ∨ X)), where we assume that the equation system contains no equations, is:

〈X ∧ (Y ∧ (Z ∨ X)), ε〉 N 〈Z ∨ X, ε〉 H 〈Z, ε〉 ↗Z

〈Y, ε〉 ↗Y 〈X, ε〉 ↗X

This can be elegantly achieved by means of the following deduction rules for the
decorations and the dependency transition relation →:

(3)
〈true, E〉>

(4)
〈false, E〉 ⊥

(5)
〈 f ∧ f ′, E〉N

(6)
〈 f ∨ f ′, E〉H

(7)
〈 f , E〉N 〈 f , E〉 6t 〈 f , E〉 → 〈g, E〉

〈 f ∧ f ′, E〉 → 〈g, E〉
(8)
〈 f ′, E〉N 〈 f ′, E〉 6t 〈 f ′, E〉 → 〈g′, E〉

〈 f ∧ f ′, E〉 → 〈g′, E〉
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(9)
〈 f , E〉H 〈 f , E〉 6t 〈 f , E〉 → 〈g, E〉

〈 f ∨ f ′, E〉 → 〈g, E〉
(10)
〈 f ′, E〉H 〈 f ′, E〉 6t 〈 f ′, E〉 → 〈g′, E〉

〈 f ∨ f ′, E〉 → 〈g′, E〉

(11)
¬〈 f , E〉N

〈 f ∧ f ′, E〉 → 〈 f , E〉
(12)

¬〈 f ′, E〉N

〈 f ∧ f ′, E〉 → 〈 f ′, E〉

(13)
¬〈 f , E〉H

〈 f ∨ f ′, E〉 → 〈 f , E〉
(14)

¬〈 f ′, E〉H

〈 f ∨ f ′, E〉 → 〈 f ′, E〉

(15)
〈 f , E〉 t n

〈 f ∧ f ′, E〉 → 〈 f , E〉
(16)

〈 f ′, E〉 t n

〈 f ∧ f ′, E〉 → 〈 f ′, E〉

(17)
〈 f , E〉 t n

〈 f ∨ f ′, E〉 → 〈 f , E〉
(18)

〈 f ′, E〉 t n

〈 f ∨ f ′, E〉 → 〈 f ′, E〉
Rules (3-6) describe the axioms for decoration. The first four deduction rules (7-
10) for → are introduced to flatten the nesting hierarchy of the same connective.
They can be used to deduce that X ∧ (Y ∧ Z) → Y. Deduction rules 7-10 work for
the situation that the subformula has a N or H but that this is not caused by a
recursion variable (see the second premise of the deduction rules in combination
with deduction rules 19 and 20). Deduction rules 11-18 describe the dependencies
in case there is no flattening possible anymore (by absence of structure). The
deduction rules 11-14 deal with the case that a subformula has no N or H. The
deduction rules 15-18 deal with the case that the subformula represents a bound
variable.

Finally, we present deduction rules that describe how the structure of a vertex
representing a variable is derived from the right-hand side of the corresponding
equation. Observe that the deduction rules only have to deal with the case that
a defining equation for the recursion variable X has been found in the Boolean
equation system. Deduction rules 19 and 20 define the predicates N and H for
the case that the right-hand side is a variable or a constant. Deduction rules 21
and 22 define the dependency relation → for the case that the right-hand side is a
variable or a constant. Deduction rules 23 and 24 do this for the cases in which the
right-hand side is a proposition formula that is neither a variable nor a constant.

(19)
σX = f ∈ E 〈 f , E〉N 〈 f , E〉 6t

〈X, E〉N
(20)

σX = f ∈ E 〈 f , E〉H 〈 f , E〉 6t

〈X, E〉H

(21)
σX = f ∈ E ¬〈 f , E〉H ¬〈 f , E〉N

〈X, E〉 → 〈 f , E〉
(22)

σX = f ∈ E 〈 f , E〉 t n

〈X, E〉 → 〈 f , E〉

(23)
σX = f ∈ E 〈 f , E〉 → 〈g, E〉 〈 f , E〉N 〈 f , E〉 6t

〈X, E〉 → 〈g, E〉
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(24)
σX = f ∈ E 〈 f , E〉 → 〈g, E〉 〈 f , E〉H 〈 f , E〉 6t

〈X, E〉 → 〈g, E〉
An SOS that is defined using negative premises is not necessarily well-defined

[Groote 1993]. In case one can provide a stratification, i.e., a mapping from transi-
tions and predicates to ordinals such that for any closed instance of every deduction
rule the positive premises are not larger than the conclusion and (the positive in-
stances of) the negative premises are strictly smaller than the conclusion, the SOS
defines a collection of transition relations and predicates uniquely. In this case,
providing such a stratification is easy. As long as all transitions are larger than
all predicates and the predicates N and H are larger than t predicates, the SOS is
stratified.

Example 3.4. An equation system E (see left) and its associated structure graph
(see right). Observe that the term X ∧ Y is shared by the equations for X and Y,
and appears only once in the structure graph as an unranked vertex. There is no
equation for Z; this is represented by term Z, decorated only by the label ↗Z . The
subterm Z ∨W in the equation for W does not appear as a separate vertex in the
structure graph, since the disjunctive subterm occurs within the scope of another
disjunction.

µX = (X ∧ Y) ∨ Z
νY = W ∨ (X ∧ Y)
µW = Z ∨ (Z ∨W)

〈X, E〉 H 3 〈Z, E〉 ↗Z〈X ∧ Y, E〉 N

〈Y, E〉 H 2 〈W, E〉 H 1

Given a formula f and an equation system E , 〈 f , E〉 denotes the part of the
structure graph generated by the deduction rules that is reachable from the vertex
〈 f , E〉.

Lemma 3.5. Let E be an equation system. Let f , f ′, g and g′ be arbitrary propo-
sition formulae such that 〈 f , E〉 ↔ 〈 f ′, E〉 and 〈g, E〉 ↔ 〈g′, E〉. Then the following
hold:

〈 f ∧ g, E〉↔ 〈 f ′ ∧ g′, E〉, 〈 f ∨ g, E〉↔ 〈 f ′ ∨ g′, E〉

Proof. Suppose that bisimilarity of 〈 f , E〉 and 〈 f ′, E〉 is witnessed by R and the
bisimilarity of 〈g, E〉 and 〈g′, E〉 is witnessed by S . The relation {(〈 f ∧ g, E〉, 〈 f ′ ∧
g′, E〉)} ∪ R ∪ S is a bisimulation relation that proves bisimilarity of 〈 f ∧ g, E〉 and
〈 f ′ ∧ g′, E〉. Similarly, {(〈 f ∨ g, E〉, 〈 f ′ ∨ g′, E〉)} ∪ R ∪ S is a bisimulation relation
that proves bisimilarity of 〈 f ∨ g, E〉 and 〈 f ′ ∨ g′, E〉.

The following lemma indicates that bisimilarity on structure graphs respects
logical equivalences such as commutativity, associativity and a weak form of idem-
potence for the ∧ and ∨ operators.

Lemma 3.6. Let E be an equation system. Let f , f ′, and f ′′ be arbitrary propo-
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sition formulae. Then the following hold:

〈( f ∧ f ′) ∧ f ′′, E〉 ↔ 〈 f ∧ ( f ′ ∧ f ′′), E〉,
〈( f ∨ f ′) ∨ f ′′, E〉 ↔ 〈 f ∨ ( f ′ ∨ f ′′), E〉,

〈 f ∧ f ′, E〉 ↔ 〈 f ′ ∧ f , E〉,
〈 f ∨ f ′, E〉 ↔ 〈 f ′ ∨ f , E〉,

〈( f ∧ f ) ∧ f ′, E〉 ↔ 〈 f ∧ f ′, E〉,
〈( f ∨ f ) ∨ f ′, E〉 ↔ 〈 f ∨ f ′, E〉

Proof. The proofs are easy. For example, the bisimulation relation that wit-
nesses bisimilarity of 〈( f ∧ f ′)∧ f ′′, E〉 and 〈 f ∧( f ′∧ f ′′), E〉 is the relation that relates
all formulae of the form 〈(g∧ g′)∧ g′′, E〉 and 〈g∧ (g′ ∧ g′′), E〉 and additionally con-
tains the identity relation on structure graphs. Proofs of the ‘transfer conditions’
are easy as well. As an example, suppose that 〈(g ∧ g′) ∧ g′′, E〉 → 〈h, E〉 for some
formula h. In case this transition is due to 〈g∧ g′, E〉N and 〈g∧ g′, E〉 → 〈h, E〉, one
of the cases that occurs for 〈g ∧ g′, E〉 → 〈h, E〉 is that 〈g, E〉N and 〈g, E〉 → 〈h, E〉.
We obtain 〈g∧ (g′∧g′′), E〉 → 〈h, E〉. Since 〈h, E〉 and 〈h, E〉 are related, this finishes
the proof of the transfer condition in this case. All other cases are similar or at
least equally easy.

Corollary 3.7. Let E be an equation system. Let F and G be arbitrary fi-
nite sets of proposition formulae such that (1) for all f ∈ F there exists g ∈ G
with 〈 f , E〉 ↔ 〈g, E〉, and, vice versa, (2) for all g ∈ G there exists f ∈ F with
〈g, E〉↔ 〈 f , E〉. Then, 〈

d
F, E〉↔ 〈

d
G, E〉 and 〈

⊔
F, E〉↔ 〈

⊔
G, E〉.

Proof. The corollary follows immediately from the congruence of ∧ and ∨
(Lemma 3.5) and commutativity and associativity of those (Lemma 3.6).

Idempotence of ∧ and ∨, and more involved logical equivalences such as distri-
bution and absorption are not captured by isomorphism or even bisimilarity on
the structure graphs. The reason is that, for an arbitrary equation system E and
variable X, the vertex associated with 〈X∧X, E〉 will be decorated by N, in contrast
to the vertex associated with 〈X, E〉!

3.2 Translating Structure Graphs to Equation Systems

Next, we show how, under some mild conditions, a formula and equation system
can be obtained from a structure graph. Later in the paper this transformation
will be used and proved correct.

A structure graph G = 〈T, t,→, d, r,↗〉 is called BESsy if it satisfies the following
constraints:

—a vertex t decorated by >,⊥ or ↗X for some X has no successor w.r.t. →.

—a vertex is decorated by N or H or a rank if and only if it has a successor w.r.t.
→.

—a vertex with multiple successors w.r.t. →, is decorated with N or H.

—every cycle contains a vertex with a rank.

Observe that BESsyness is preserved under bisimilarity:

Lemma 3.8. Let G and G′ be bisimilar structure graphs. Then, G is BESsy if,
and only if, G′ is BESsy.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2011.



Structural Analysis of Boolean Equation Systems · 17

Proof. This follows immediately from the transfer conditions of bisimilarity.

The following lemma states that any structure graph obtained from a formula
and an equation system is BESsy.

Lemma 3.9. For any formula f and equation system E, the structure graph 〈 f , E〉
is BESsy.

Proof. We have to establish that the structure graph 〈 f , E〉 is BESsy. Thereto
it has to be shown that the four requirements of the definition of BESsyness are
satisfied.

The first one trivially follows by considering all the possibilities for generating a
vertex labelled by either >, ⊥, or ↗X. In each case it turns out that f is of a form
that does not allow the derivation of a →-transition.

The proof of the second requirement requires induction on the depth of the proof
of 〈 f , E〉N, 〈 f , E〉H, or 〈 f , E〉 t, respectively. Inside this induction there is a case
distinction on the deduction rule that has been applied last in the proof.

For the proof of the third requirement it suffices to consider all possibilities for
generating multiple successors and it follows easily that in these cases the vertex is
also labelled by N or H.

The last requirement follows trivially from the observation that a cycle of suc-
cessor relations can never be generated without using a bound variable along the
cycle. This would inevitably introduce a rank for that vertex.

For a BESsy structure graph G = 〈T, t,→, d, r,↗〉 the function ϕ is defined as
follows: for u ∈ T

ϕ(u) =



d
{ϕ(u′) | u→ u′} if d(u) = N and u 6∈ dom(r),⊔
{ϕ(u′) | u→ u′} if d(u) = H and u 6∈ dom(r),

true if d(u) = >,
false if d(u) =⊥,
X if ↗ (u) = X,
Xu otherwise.

The function ϕ introduces variables for those vertices that are in the domain of
the vertex rank mapping or the free variable mapping. In the second case, the
associated variable name is used. In the former case, a fresh variable name is
introduced to represent the vertex. For other vertices the structure that is offered
via vertex decoration mapping d is used to obtain a formula representing such a
structure.

Definition 3.10. Let G = 〈T, t,→, d, r,↗〉 be a BESsy structure graph. The
equation system associated to G, denoted β(G), is defined below.

To each vertex u ∈ T such that u ∈ dom(r), we associate an equation of the form:

σXu = rhs(u)

Here σ is µ in case the rank associated to the vertex is odd, and ν otherwise. rhs(u)
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is defined as follows:

rhs(u) =


d
{ϕ(u′) | u→ u′} if d(u) = N⊔
{ϕ(u′) | u→ u′} if d(u) = H

ϕ(u′) if d(u) 6= N, d(u) 6= H, and u→ u′

The equation system β(G) is obtained by ordering the equations from left-to-right
ensuring the ranks of the vertices associated to the equations are descending.

We next show the correspondence between a BES and the BES obtained from
its structure graph. First, given a BES E we show the correspondence between the
right hand side of an equation in E , and the right hand side obtained from the
structure graph of E .

Proposition 3.11. Let E be a BES such that σY = f ∈ E. Then for all environ-
ments η for which η(Z) = η(X〈Z,E〉) for all Z ∈ bnd(E), we have [[ f ]]η = [[rhs(〈Y, E〉)]]η.

Proof. We prove this using a distinction on the cases of rhs(〈Y, E〉). The proof
involves a number of lemmata expressing distribution laws of ϕ over Boolean con-
nectives ∧ and ∨, as well as the relation between f and ϕ(〈 f , E〉) for arbitrary
formulae f . These lemmata in turn require proofs involving case distinctions on
the SOS rules, and induction on formulae. The required lemmata, as well as a
detailed proof of this proposition (rephrased as Proposition A.4) can be found in
the appendix.

Next we show that evaluating a formula f in a BES E , and evaluating the formula
ϕ(〈 f , E〉) in the BES β(〈 f , E〉) are equivalent.

Theorem 3.12. Let E be a BES and η an environment. Then for all formulae
f it holds that [[ f ]][[E ]]η = [[ϕ(〈 f , E〉)]][[β(〈 f , E〉)]]η.

Proof. Let F abbreviate the equation system β(〈 f , E〉), and abbreviate the for-
mula ϕ(〈 f , E〉) by g. Note that by construction, F consists of equations of the form
σX〈Z,E〉 = rhs(〈Z, E〉), for Z ∈ bnd(E).

Denote the free-variable closure of E , F , f and g, using η by Ec, Fc, fc and gc,
respectively. According to Lemma 2.7, we have [[Ec]] = [[E ]]η, and [[Fc]] = [[F ]]η, and,
likewise, [[ f ]][[E ]]η = [[ fc]][[Ec]] and [[g]][[F ]]η = [[gc]][[Fc]]. Let E ′ be the equation system
obtained by merging all equations of Ec and Fc, such that:

(1) rankE′(X) = rankE(X) for all X ∈ bnd(Ec);

(2) rankE′(X〈Z,E〉) = rankE(Z) for all X〈Z,E〉 ∈ bnd(Fc).

Observe that the resulting E ′ is well-formed, since we have

bnd(Ec) ∩ bnd(Fc) = ∅

Moreover, since

bnd(Ec) ∩ occ(Fc) = bnd(Fc) ∩ occ(Ec) = ∅

also [[E ′]] = [[Ec]][[Fc]], i.e., we can find the solution to Ec and Fc by solving E ′. We
rely on [Willemse 2010, Theorem 2] for proving [[E ′]](Z) = [[E ′]](X〈Z,E〉). For this, we
must construct a relation R⊆ bnd(E ′)× bnd(E ′), such that X R Y implies
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—rankE′(X) = rankE′(Y);

—for all θ ∈ {η | U R V =⇒ η(U) = η(V)}, we have [[ fX]]θ = [[ fY ]]θ, where fX and
fY are the right-hand sides of the equations for X and Y.

Given such a relation R, we can conclude that [[E ′]](X) = [[E ′]](Y) for all X R Y.
Using Proposition 3.11, it is not hard to check that the relation R, defined as

R= {(Z, X〈Z,E〉), (X〈Z,E〉,Z) | X〈Z,E〉 ∈ Fc}

is indeed such a relation. We therefore find that for all X〈Z,E〉 ∈ bnd(Fc), we have
[[Z]][[E ′]] = [[X〈Z,E〉]][[E ′]]. More specifically we find that [[Z]][[Ec]] = [[X〈Z,E〉]][[Fc]]. It is
not hard to show that then also [[ fc]][[Ec]] = [[gc]][[Fc]]. Hence our claim follows.

We illustrate the various translations described in this section through the following
example.

Example 3.13. Consider the labelled transition system L given below.

s0 s1

s2

b

b

b

bba
b

Let φ = νX.[a]X ∧ 〈b〉X. Consider the following equation system E = EL(φ),
together with the structure graph 〈Xs0 , E〉:

(νXs0 = (Xs2 ∧ Xs2) ∧ (Xs0 ∨ (Xs1 ∨ Xs1)))
(νXs1 = true ∧ (Xs0 ∨ (Xs2 ∨ Xs2)))
(νXs2 = true ∧ (Xs0 ∨ (Xs1 ∨ Xs1)))

〈Xs0 , E〉 N 0

〈Xs0 ∨ (Xs2 ∨ Xs2), E〉 H

〈Xs0 ∨ (Xs1 ∨ Xs1), E〉 H〈Xs1 , E〉 N 0 〈Xs2 , E〉 N 0

〈true, E〉 >

Observe that the above structure graph can be minimised with respect to bisim-
ilarity, identifying vertices 〈Xs1 , E〉 and 〈Xs2 , E〉, as well as 〈Xs0 ∨ (Xs1 ∨ Xs1), E〉 and
〈Xs0∨(Xs2∨Xs2), E〉. This leads to the following bisimilar, minimal structure graph:
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〈Xs0 ∨ (Xs1 ∨ Xs1), E〉/↔ H〈Xs0 , E〉/↔ N 0 〈Xs1 , E〉/↔ N 0

〈true, E〉/↔ >

The above structure graph induces the following equation system, using the trans-
lation of Definition 3.10.

(νX〈Xs0 ,E〉/↔
= (X〈Xs0 ,E〉/↔

∨ (X〈Xs1 ,E〉/↔
∨ X〈Xs1 ,E〉/↔

)) ∧ (X〈Xs1 ,E〉/↔
∧ X〈Xs1 ,E〉/↔

))

(νX〈Xs1 ,E〉/↔
= (X〈Xs0 ,E〉/↔

∨ (X〈Xs1 ,E〉/↔
∨ X〈Xs1 ,E〉/↔

)) ∧ (true ∧ true))

The size of the original structure graph is 6. By comparison, the size of the minimal
structure graph is 4. As will become clear in Section 5, solving the above equation
system enables one to deduce the solution to the original equation system.

4. NORMALISATION OF STRUCTURE GRAPHS

In BESsy structure graphs, a vertex that is decorated by a rank typically represents
a proposition variable that occurs at the left-hand side of some equation in the
associated equation system, whereas the non-ranked vertices can occur as subterms
in right-hand sides of equations with mixed occurrences of ∧ and ∨. Normalisation
of a structure graph assigns a rank to each non-ranked vertex that has successors.
The net effect of this operation is that the structure graph obtained this way induces
an equation system in simple form. In choosing the rank, one has some degree of
freedom; an effective and sound strategy is to ensure that all equations in the
associated equation system end up in the very last block. This is typically achieved
by assigning 0 as a rank.

(25)
tN

norm(t)N
(26)

tH

norm(t)H
(27)

t→ t′

norm(t)→ norm(t′)

(28)
t>

norm(t)>
(29)

t ⊥

norm(t) ⊥
(30)

t↗X

norm(t)↗X

(31)
t t n

norm(t) t n
(32)

t 6t t→ t′

norm(t) t 0

The last deduction rule expresses that in case a vertex t does not have a rank,
rank 0 is associated to the normalised version of t, provided, of course, that the
vertex has a successor. Observe that normalisation preserves BESsyness of the
structure graph, i.e., any BESsy structure graph that is normalised again yields a
BESsy structure graph.

Property 4.1. Let t be an arbitrary BESsy structure graph.

(1 ) ϕ(norm(t)) ∈ X ∪ {true, false};
ACM Transactions on Computational Logic, Vol. V, No. N, January 2011.



Structural Analysis of Boolean Equation Systems · 21

(2 ) β(norm(t)) is in simple form;

(3 ) norm(norm(t))↔ norm(t).

The well-definedness of the extended SOS is obtained by adapting the stratifica-
tion from the previous SOS by requiring that t t n is larger than u t m in all cases
where the number of occurrences of norm in t is larger than in u.

The lemmata below formalise that the solution to an equation system that is
induced by a BESsy structure graph, is preserved and reflected by the equation
system associated to the normalised counterpart of that structure graph.

Lemma 4.2. Let t be a BESsy structure graph. Then, there is a total injective
mapping h : bnd(β(t))→ bnd(β(norm(t))), such that for all η:

∀X ∈ bnd(β(t)) : [[β(t)]]η(X) = [[β(norm(t))]]η(h(X))

Proof. Observe that for each ranked vertex u in t, vertex norm(u) has the same
rank in norm(t). Following Definition 3.10, these vertices both induce equations
in the equation systems that appear in the same block of identical fixed point
equations. All unranked vertices u′ in t that are ranked in norm(t), induce ν-
equations at the end of the equation system induced by norm(t). References to
these latter equations can be eliminated, following [Mader 1997, Lemma 6.3].

Lemma 4.3. Let t be a BESsy structure graph. Then, for all η:

[[ϕ(t)]][[β(t)]]η = [[ϕ(norm(t))]][[β(norm(t))]]η

Proof. Follows from Lemma 4.2.

The example below illustrates an application of normalisation, and it provides a
demonstration of the above lemmata and its implications.

Example 4.4. The BESsy structure graph depicted at the left contains a single
vertex that is not decorated with a rank. Normalisation of this structure graph
yields the structure graph depicted at the right.

u H 3

v 1

t N

w H 2

x H 1

=⇒

norm(u) H 3

norm(v) 1

norm(t) N 0

norm(w) H 2

norm(x) H 1
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Assuming that vertex t is the initial vertex, β(t) is as follows:

(µXu = (Xu ∧ (Xw ∧ Xw)) ∨ (Xv ∨ Xv))
(νXw = (Xu ∧ (Xw ∧ Xw)) ∨ (Xx ∨ Xx))
(µXv = Xv)
(µXx = Xv ∨ (Xx ∨ Xx))

β(norm(t)) has similar top-level logical operands as β(t), but contains an extra
greatest fixed point equation trailing the other four, and references to this equation:

(µXnorm(u) = Xnorm(t) ∨ (Xnorm(v) ∨ Xnorm(v)))
(νXnorm(w) = Xnorm(t) ∨ (Xnorm(x) ∨ Xnorm(x)))
(µXnorm(v) = Xnorm(v))
(µXnorm(x) = Xnorm(v) ∨ (Xnorm(x) ∨ Xnorm(x)))
(νXnorm(t) = Xnorm(u) ∧ (Xnorm(w) ∧ Xnorm(w)))

According to Lemma 4.2, there is an injection h : bnd(β(t)) → bnd(β(norm(t))),
such that for all X ∈ bnd(β(t)), we have [[β(t)]](X) = [[β(norm(t))]](h(X)); h(Xz) =
Xnorm(z) for z ∈ {u, v,w, x} is such an injection. Following Lemma 4.3, we fur-
thermore find [[ϕ(t)]][[β(t)]] = [[Xu ∧ (Xw ∧ Xw)]][[β(t)]] = [[Xnorm(t)]][[β(norm(t))]] =
[[ϕ(norm(t))]][[β(norm(t))]].

The below proposition states that bisimilarity on structure graphs is a congruence
for normalisation.

Proposition 4.5. Let t, t′ be arbitrary, but bisimilar structure graphs. Then
also norm(t)↔ norm(t′).

Proof. Let R be a bisimulation relation witnessing t↔ t′. We define the rela-
tion Rn as {(norm(u), norm(u′)) | (u, u′) ∈ R}. Then Rn is a bisimulation relation
witnessing norm(t)↔ norm(t′).

Ultimately, the above proposition implies that the simple form is not harmful from a
bisimulation perspective: normalisation does not lead to larger quotients of struc-
ture graphs. This addresses the hitherto open question concerning the effect of
normalisation on the bisimulation reductions of [Keiren and Willemse 2009]. For-
mally, we have:

Theorem 4.6. Let t be an arbitrary structure graph. Then t/↔ is at least as
large as norm(t)/↔ .

Proof. The theorem follows immediately from the fact that norm(t) and t are
equal in size, and Proposition 4.5.

The example below illustrates that normalisation can in fact sometimes be beneficial
for the minimising capabilities of bisimulation.

Example 4.7. Consider the following equation system E , with the associated
structure graph 〈X, E〉 (represented by vertex u) depicted next to it.
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(µX = X ∧ (Y ∨ X))
(νY = Y ∨ X)

u N 1

v H 0

w H

Clearly, the structure graph is already minimal. Normalisation upcasts vertex w to
a ranked vertex, assigning rank 0 to it. It is then easy to check that vertices norm(w)
and norm(v) are bisimilar. Hence, the quotient of norm(u) has size 2, compared to
size 3 for u.

5. BISIMILARITY IMPLIES SOLUTION EQUIVALENCE

In this section we state one of our main results, proving that equation systems cor-
responding to bisimilar BESsy structure graphs essentially have the same solution.
This allows one to safely use bisimulation minimisation of the structure graph, and
solve the equation system induced by the minimal structure graph instead. Before
we give our main theorem, we first lift some known results for equation systems, see
e.g. [Mader 1997; Keinänen 2006; Keiren and Willemse 2009], to structure graphs.

Definition 5.1. Let 〈T, t,→, d, r,↗〉 be a structure graph. A partial function
γ:T 7→ T is a •-choice function, with • ∈ {N,H}, when both:

—dom(γ) = {u ∈ T | d(u) = • ∧ u→};
—u→ γ(u) for all u ∈ dom(γ).

Given a •-choice function γ, with • ∈ {N,H}, for a structure graph, we can obtain
a new structure graph by choosing one successor among the successors for vertices
decorated with a •, viz., the one prescribed by γ. This is formalised next.

Definition 5.2. Let G = 〈T, t,→, d, r,↗〉 be an arbitrary structure graph. Let
• ∈ {N,H}, and γ a •-choice function. The structure graph Gγ , obtained by applying
the •-choice function γ on G, is defined as the six-tuple 〈T, t,→γ , dγ , r,↗〉, where:

—for all u /∈ dom(γ), u→γ u′ if and only if u→ u′;
—for all u ∈ dom(γ), only u→γ γ(u);

—dγ(t) = d(t) and dom(dγ) = {u | d(u) 6= •}

Observe that a structure graph obtained by applying a N-choice function entails a
structure graph in which no vertex is labelled with N. Similarly, applying a H-choice
function yields a structure graph without H labelled vertices.

Property 5.3. Let t be an arbitrary BESsy structure graph. Assume an arbi-
trary •-choice function γ on t. Then norm(t)γ is again BESsy.

The effect that applying, e.g., a N-choice function has on the solution to the
equation system associated to the structure graph to which it is applied, is charac-
terised by the proposition below. This result is well-known in the setting of equation
systems, see e.g. [Mader 1997].
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Proposition 5.4. Let t be a normalised, BESsy structure graph, with no vertex
labelled ↗.

(1 ) For all N-choice functions γ applied to t, we have [[β(t)]] v [[β(tγ)]];

(2 ) There exists a N-choice function γ, such that [[β(t)]] = [[β(tγ)]].

(3 ) For all H-choice functions γ applied to t, we have [[β(t)]] w [[β(tγ)]];

(4 ) There exists a H-choice function γ, such that [[β(t)]] = [[β(tγ)]].

Proof. Follows immediately from [Mader 1997, Proposition 3.36], and the cor-
respondence between structure graphs and Boolean Equation Systems.

In some cases, viz., when a structure graph is void of any vertices labelled H or void
of vertices labelled N, the solution of an equation system associated to a structure
graph can be characterised by the structure of the graph. While one could consider
these to be degenerate cases, they are essential in our proof of the main theorem in
this section. A key concept used in characterising the solution of equation systems
in the degenerate cases is that of a ν-dominated lasso, and its dual, µ-dominated
lasso.

Definition 5.5. Let t be a BESsy structure graph. A lasso starting in t is a
finite sequence t0, t1, . . . , tn, satisfying t0 = t, tn = t j for some j ≤ n, and for each
1 ≤ i ≤ n, ti−1 → ti. A lasso is said to be ν-dominated if max{r(ti) | j ≤ i ≤ n} is
even; otherwise it is µ-dominated.

The following lemma is loosely based on lemmata taken from Keinänen (see
Lemmata 40 and 41 in [Keinänen 2006]).

Lemma 5.6. Let t be a normalised, BESsy structure graph in which no vertex is
labelled with ↗. Then:

(1 ) if no vertex in t is labelled with N then [[ϕ(t)]][[β(t)]] = true if and only if some
lasso starting in t is ν-dominated, or some maximal, finite path starting in t
terminates in a vertex labelled with >;

(2 ) if no vertex in t is labelled with H then [[ϕ(t)]][[β(t)]] = false if and only if some
lasso starting in t is µ-dominated, or some maximal, finite path starting in t
terminates in a vertex labelled with ⊥

Proof. We only consider the first statement; the proof of the second statement
is dual. Observe that since no vertex in t is labelled with N, ϕ(u) 6=

d
{u1, . . . , un}

for all u. We distinguish two cases:

(1) Assume there is a ν-dominated lasso t0, t1, . . . , tn, starting in t. BESsyness of
t implies that there is a ranked vertex ti on the cycle of the lasso. Without
loss of generality assume that ti has the highest rank on the cycle of the ν-
dominated lasso. By definition, this highest rank is even. This means that it
induces an equation νXti = gi in β(t), that precedes all other equations σXtk = gk

induced by the other vertices on the cycle. Consider the path snippet starting
in ti, leading to ti again: ti, ti+1, . . . , tn−1, t j, t j+1, ti−1. Gauß elimination [Mader
1997] allows one to substitute gi+1 for Xti+1 in the equation for Xti , yielding
νXti = gi[Xti+1

:= gi+1]. Repeatedly applying Gauß elimination on the path
snippet ultimately allows one to rewrite νXti = gi to νXti = g′i ∨ Xti , since Xti−1
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depends on Xti again, and none of the formulae is conjunctive. The solution to
νXti = g′i∨Xti is easily seen to be Xti = true. This solution ultimately propagates
through the entire lasso, and back to t, leading to ϕ(t) = Xt = true.

(2) Suppose there is a finite path t0, t1, . . . , tn starting in t, where tn is labelled with
>. This means that there is an equation σXtn = true on which Xt depends. As
the equation σXtn = true is solved, we may immediately substitute the solution
in all other formulae on the path. As none of the formulae is conjunctive, we
find ϕ(t) = true.

Conversely, observe that due to Proposition 5.4, there is a structure graph tH, void
of any vertices labelled H, that has an equation system associated to it with solution
equivalent to that of the equation system associated to t. This means that tH has
no branching structure, but is necessarily a set of lassoes and maximal, finite paths.
In case the initial vertex of t is on a lasso, [[ϕ(t)]][[β(t)]] = true is because the cycle
on the lasso has an even highest rank. In the other case, [[ϕ(t)]][[β(t)]] = true can
only be the case because ultimately tH leads to a vertex labelled true.

Using the structure graph characterisation of solution, we prove that, for BESsy
structure graphs that do not have vertices labelled with ↗, bisimulation minimi-
sation of the structure graph preserves the solution of the associated BES.

Lemma 5.7. Let t, t′ be normalised BESsy structure graphs in which no vertex is
labelled with ↗. Assume t is minimal w.r.t strong bisimilarity. Then t↔ t′ implies
[[ϕ(t)]][[β(t)]] = [[ϕ(t′)]][[β(t′)]].

Proof. The case where the initial vertex of t is decorated with a > or ⊥ is trivial
and therefore omitted. Assume that the initial vertex of t is not decorated with >
nor ⊥. Suppose that [[ϕ(t)]][[β(t)]] = true. By Proposition 5.4 we know that there
is a H-choice function γ such that [[β(tγ)]] = [[β(t)]]. We next construct a H-choice
function γ′ for t′ that satisfies the following condition:

∀u ∈ dom(γ), u′ ∈ dom(γ′) : u↔ u′ =⇒ γ(u)↔ γ′(u′)

Note that the minimality of t is such that γ satisfies γ(w)↔ γ(w′) for all w↔ w′

with w,w′ ∈ dom(γ). We then have tγ ↔ tγ′ , as the choice for successors chosen
in previously bisimilar H-labelled vertices is synchronised by the H-choice function.
Because of this bisimilarity and the finiteness of t′, any ν-dominated lasso starting
in a vertex u reachable in t implies the existence of a similar ν-dominated lasso
starting in vertices u′ reachable in t′ that are bisimilar to u, and, of course, also vice
versa. Likewise for maximal finite paths. Suppose the initial vertex of tγ has only
ν-dominated lassoes and finite maximal paths ending in >-labelled vertices. Then,
by construction, so has t′γ′ . This means that

[[ϕ(t)]][[β(t)]] = [[ϕ(tγ)]][[β(tγ)]] =† true = [[ϕ(t′γ′)]][[β(t′γ′)]]

where at †, Lemma 5.6 is used. Using Proposition 5.4, we find:

[[ϕ(t′γ′)]][[β(t′γ′)]] =⇒ [[ϕ(t′)]][[β(t′)]]

Combining the above, we can conclude that we have:

[[ϕ(t′)]][[β(t′)]] = true
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The case where [[ϕ(t)]][[β(t)]] = false follows the same line of reasoning, constructing a
structure graph with a N-choice function γ, resulting in a structure graph containing
no vertices labelled N.

We set out to prove that bisimilar structure graphs t and t′ always give rise to
equation systems and formulae with the same truth value. The above lemma may
seem like a roundabout way in proving this property. In particular, the assump-
tion in Lemma 5.7 that t is minimal with respect to bisimilarity may seem odd.
The reason for using the quotient is due to our appeal to the non-constructive
Proposition 5.4, as we illustrate through the following example.

Example 5.8. Consider the two bisimilar BESsy structure graphs t and t′ below:

t H 1

w 2

v H 1 t′ H 1

w′ 2

Following Lemma 5.6, we know that all vertices will be associated to proposition
variables with solution true, as both structure graphs are normalised and contain no
N-labelled vertices. Appealing to Proposition 5.4, we know that there is a structure
graph tH that gives rise to an equation system with the same solution as the one
that can be associated to t. In fact, there are three choices for tH:

t 1

w 2

v 1 t 1

w 2

v 1 t 1

w 2

v 1

Note that all three structure graphs are associated to equation systems with the
same solution as the equation system for t. However, while the middle structure
graph would allow us to construct a H-choice function that resolves the choice for
successors for vertex t′, the other two structure graphs do not allow us to do so,
simply because they have bisimilar vertices whose only successor leads to different
equivalence classes. Such conflicts do not arise when assuming that t is already
minimal, in which case each vertex represents a unique class.

Regardless of the above example, we can still derive the desired result. Based on
the previous lemma, the fact that bisimilarity is an equivalence relation on structure
graphs and the fact that quotienting is well-behaved, we find the following theorem,
which holds for arbitrary BESsy structure graphs.

Theorem 5.9. Let t, t′ be arbitrary bisimilar BESsy structure graphs. Then for
all environments η, [[ϕ(t)]][[β(t)]]η = [[ϕ(t′)]][[β(t′)]]η.

Proof. Let η be an arbitrary environment. Let t and t′ be the structure graphs
obtained from t and t′ by replacing all decorations of the form ↗X of all vertices
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with > if η(X) = true, and ⊥ otherwise. Note that we have t ↔ t′. Based on
Lemma 2.7 and Definition 3.10, we find:

[[ϕ(t)]][[β(t)]]η = [[ϕ(t)]][[β(t)]]

Likewise, we can derive such an equivalence for t′ and t′. By Lemma 4.3, we find:

[[ϕ(t)]][[β(t)]] = [[ϕ(norm(t))]][[β(norm(t))]]

Again, a similar equivalence can be derived for t′ and norm(t′). Observe that by
Proposition 4.5, we find that t ↔ t′ implies norm(t) ↔ norm(t′). Observe that
norm(t)↔ norm(t)/↔ ↔ norm(t′). Finally, since all three are still BESsy structure
graphs, that furthermore do not contain vertices labelled with ↗, we can apply
Lemma 5.7 twice to find:

[[ϕ(norm(t))]][[β(norm(t))]]
= [[ϕ(norm(t)/↔ )]][[β(norm(t)/↔ )]]

= [[ϕ(norm(t′))]][[β(norm(t′))]]

But this necessitates our desired conclusion:

[[ϕ(t)]][[β(t)]] = [[ϕ(t′)]][[β(t′)]]

6. BISIMILARITY ON PROCESSES VS BISIMILARITY ON STRUCTURE GRAPHS

The µ-calculus and bisimilarity of labelled transition systems are intimately related:
two states in a transition system are bisimilar if and only if the states satisfy the
same set of µ-calculus formulae. As a result, one can rely on bisimulation minimisa-
tion techniques for reducing the complexity of the labelled transition system, prior
to analysing whether a given µ-calculus formula holds for that system. Unfortu-
nately, in practice, bisimulation reductions are often disappointing, and have to be
combined with abstractions that are safe with respect to the formula in order to be
worthwhile.

We show that minimising an equation system that encodes a model checking
problem is, size-wise, always at least as effective as first applying a safe abstraction
to the labelled transition system, subsequently minimising the latter and only then
encoding the model checking problem in an equation system. An additional example
illustrates that bisimulation minimisation for equation systems can in fact be more
effective.

Lemma 6.1. Assume L = 〈S ,Act,→〉 is an arbitrary labelled transition system.
Let φ be an arbitrary formula. Then, for arbitrary equation system E, we have:

if ∀s, s′ ∈ S : s↔ s′ =⇒ ∀X̃ ∈ bnd(φ) ∪ occ(φ) : 〈Xs, E〉↔ 〈Xs′ , E〉
then ∀s, s′ ∈ S : s↔ s′ =⇒ 〈RHSs(φ), E〉↔ 〈RHSs′(φ), E〉

Proof. Assume a given equation system E . We proceed by means of an induc-
tion on the structure of φ.

—Base cases. Assume that for all s, s′ ∈ S , satisfying s↔ s′, and all X̃ ∈ bnd(φ) ∪
occ(φ), we have 〈Xs, E〉 ↔ 〈Xs′ , E〉. Assume that t, t′ ∈ S are arbitrary states
satisfying t↔ t′.
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—ad φ ≡ b, where b ∈ {true, false}. Clearly, 〈RHSt(φ), E〉 = 〈b, E〉 = 〈RHSt′(φ), E〉,
so bisimilarity is guaranteed by unicity of the term, regardless of the states t
and t′;

—ad φ ≡ X̃. Clearly, X̃ ∈ occ(φ), so, the required conclusion follows immediately
from the fact that 〈RHSt(φ), E〉 = 〈Xt, E〉↔ 〈Xt′ , E〉 = 〈RHSt′(φ), E〉;

—Inductive cases: we assume the following induction hypothesis:

if ∀s, s′ ∈ S : s↔ s′ =⇒ ∀X̃ ∈ bnd( fi) ∪ occ( fi) : 〈Xs, E〉↔ 〈Xs′ , E〉
then ∀s, s′ ∈ S : s↔ s′ =⇒ 〈RHSs( fi), E〉↔ 〈RHSs′( fi), E〉

(IH)

From hereon, assume that we have a pair of bisimilar states t, t′ ∈ S .
—ad φ ≡ f1 ∧ f2. Assume that for any pair of bisimilar states s, s′ ∈ S , and

for all X̃ ∈ bnd( f1 ∧ f2) ∪ occ( f1 ∧ f2) = (bnd( f1) ∪ occ( f1)) ∪ (bnd( f2) ∪
occ( f2)), we have 〈Xs, E〉 ↔ 〈Xs′ , E〉. By our induction hypothesis, we have
〈RHSt( f1), E〉 ↔ 〈RHSt′( f1), E〉 and 〈RHSt( f2), E〉 ↔ 〈RHSt′( f2), E〉. Lemma 3.5
immediately leads to 〈RHSt( f1)∧RHSt( f2), E〉↔ 〈RHSt′( f1)∧RHSt′( f2), E〉. By
definition of RHS, we have the required 〈RHSt( f1∧ f2), E〉↔ 〈RHSt′( f1∧ f2), E〉.

—ad φ ≡ f1 ∨ f2. Follows the same line of reasoning as the previous case.
—ad φ ≡ [A] f1. Assume that for all pairs of bisimilar states s, s′ ∈ S , and all

X̃ ∈ bnd([A] f1) ∪ occ([A] f1) = bnd( f1) ∪ occ( f1), we have 〈Xs, E〉 ↔ 〈Xs′ , E〉.
By induction, we find that 〈RHSs( f1), E〉 ↔ 〈RHSs′( f1), E〉 holds for all pairs
of bisimilar states s, s′ ∈ S . This includes states t and t′. Since t and t′ are
bisimilar, we have t a−→ if and only if t′ a−→ for all a ∈ A. We distinguish two
cases:
(1) Case t 6 a−→ for any a ∈ A. Then also t′ 6 a−→ for any a ∈ A. Hence,

RHSt([A] f1) = true = RHSt′([A] f1). We thus immediately have the re-
quired 〈RHSt([A] f1), E〉↔ 〈RHSt′([A] f1), E〉;

(2) Case t a−→ for some a ∈ A. Assume that t a−→ u. Since t ↔ t′, we have

t′ a−→ u′ for some u′ ∈ S satisfying u↔ u′ (and vice versa). Because of our
induction hypothesis, we then also have 〈RHSu( f1), E〉 ↔ 〈RHSu′( f1), E〉
(and vice versa). We thus find that for every term in the non-empty set

{〈RHSu( f1), E〉〉 | a ∈ A, t a−→ u}, we can find a bisimilar term in the set

{〈RHSu′( f1), E〉 | a ∈ A, t′ a−→ u′} and vice versa. Then, by Corollary 3.7,

also 〈
d
{RHSu( f1) | a ∈ A, t a−→ u}, E〉 ↔ 〈

d
{RHSu′( f1) | a ∈ A, t′ a−→ u′}, E〉.

This leads to 〈RHSt([A] f1), E〉↔ 〈RHSt′([A] f1), E〉.
Clearly, both cases lead to the required conclusion.

—ad φ ≡ 〈A〉 f1. Follows the same line of reasoning as the previous case.
—ad φ ≡ σX̃. f1. Since X̃ ∈ bnd(φ), this case follows immediately from the

assumption on X̃ and the definition of RHS.

The above lemma is at the basis of the following proposition:

Proposition 6.2. Let L = 〈S ,Act,→〉 be a labelled transition system. Let φ be
an arbitrary closed µ-calculus formula. Let s, s′ ∈ S be an arbitrary pair of bisimilar
states. We then have:

∀X̃ ∈ bnd(φ) : 〈Xs,E
L(φ)〉 ↔ 〈Xs′ ,E

L(φ)〉
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Proof. Let φ be an arbitrary closed formula, i.e., occ(φ) ⊆ bnd(φ); since φ is
a closed formula, EL(φ) will be a closed equation system. In case bnd(φ) = ∅, the
statement holds vacuously. Assume bnd(φ) = {X̃1, . . . , X̃n}, for some n > 1. Clearly,
for each variable X̃i ∈ bnd(φ), we obtain equations of the form σiXi

s = RHSs( f i) in
EL(φ). Let I be the relation on vertices, defined as follows:

I = {(〈Xi
s,E

L(φ)〉, 〈Xi
s′ ,E

L(φ)〉) | s, s′ ∈ S , X̃i ∈ bnd(φ), s↔ s′}

According to Lemma 6.1, I underlies the bisimilarity between 〈RHSs( f i),EL(φ)〉
and 〈RHSs′( f i),EL(φ)〉 for pairs of bisimilar states s, s′ ∈ S . Assume R f i is the
bisimulation relation underlying said equivalence. Let R be defined as follows:

R = I ∪
⋃

f i

R f i

R is again a bisimulation relation, as can be checked using the SOS rules for equa-
tions and Lemma 6.1. Clearly, R relates 〈Xs,E

L(φ)〉 and 〈Xs′ ,E
L(φ)〉 for arbitrary

X̃ ∈ bnd(φ) and bisimilar states s, s′ ∈ S .

As a result of the above proposition one can argue that bisimulation on pro-
cesses is less powerful than bisimulation on equation systems. However, one may
be inclined to believe that combined with abstraction, bisimilarity on processes can
lead to greater reductions. Below, we show that even in the presence of safe ab-
stractions, bisimilarity on equation systems still surpasses bisimilarity on processes.

We first formalise the notion of safe abstraction for processes. Assume τ is a
constant, not present in any set of actions Act.

Definition 6.3. An abstraction of a labelled transition system L = 〈S ,Act,→〉
with respect to a set of actions A ⊆ Act, is the labelled transition system LA =
〈S ,Act ∪ {τ},→A〉, where:

—for all actions a /∈ A, s a−→A s′ if and only if s a−→ s′;
—s τ−→A s′ if and only if s a−→ s′ for some a ∈ A;

In effect, an abstraction relabels an action that decorates a transition to τ only if
that action appears in the set A. Clearly, if s↔ s′ holds in L, then also s↔ s′ in
LA, but the converse does not hold necessarily.

Definition 6.4. An abstraction LA of L is said to be safe with respect to a closed
modal µ-calculus formula φ if and only if for each subformula [A′]ψ and 〈A′〉ψ of φ,
A′ ∩ A = ∅.
It follows from the semantics of the modal µ-calculus that all actions of some L,
disjoint with the actions found inside the modalities in φ can be renamed to τ
without affecting the validity of the model checking problem.

Proposition 6.5. Let L = 〈S ,Act,→〉 be a labelled transition system. Let φ be
a closed modal µ-calculus formula, and assume LA is a safe abstraction of L. Then
for each state s ∈ S , we have L, s |= φ if and only if LA, s |= φ.

The below theorem strengthens the result we obtained in Proposition 6.2, by stating
that even in the presence of safe abstractions, bisimilarity for equation systems are
as powerful as bisimilarity taking abstractions into account.
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Theorem 6.6. Let L = 〈S ,Act,→〉 be an arbitrary labelled transition system.
Let φ be an arbitrary closed modal µ-calculus formula over Act. Then for every safe
abstraction LA of L, we have for every pair of bisimilar states s, s′ ∈ S in LA:

∀X ∈ bnd(φ) : 〈Xs,E
L(φ)〉 ↔ 〈Xs′ ,E

L(φ)〉

Proof. The proof is similar to the proof of Proposition 6.2. In particular, it
relies on the definition of a safe abstraction to ensure that 〈RHSs([A′]ψ), E〉 and
〈RHSs′([A′]ψ), E〉 for states s, s′ that are bisimilar in LA, but not in L, are mapped
onto 〈true, E〉 for both LTSs.

In fact, Theorem 6.6 positively answers the second question that was raised in the
introduction. Bisimilar states in a state space indeed give rise to bisimilar equations
in the equations systems encoding model checking problems, even when considering
‘safe’ abstractions on the original state space.

Lastly, we provide an example that demonstrates that bisimulation reduction of
equation systems can lead to arbitrarily larger reductions compared to the reduc-
tions achievable through safe abstractions and minimisation of a given LTS.

Example 6.7. Let N be an arbitrary positive number. Consider the process de-
scribed by the following set of recursive processes (using process algebra style no-
tation):

{P1 = a · QN , Pn+1 = a · Pn, Q1 = b · PN , Qn+1 = b · Qn | n < N}

Process PN induces an LTS L that performs a sequence of a actions of length N,
followed by a sequence of b actions of length N, returning to process PN . Observe
that the process PN cannot be reduced further modulo bisimulation. Let φ be
the modal µ-calculus formula φ = νX̃. 〈{a, b}〉X̃, asserting that there is an infinite
sequence consisting of a’s, b’s, or a’s and b’s. Clearly, there is no safe abstraction
of process PN with respect to φ, other than process PN itself. The equation system
EPN (φ) is as follows:

ν{(XP1 = XQN ∨ XQN ), (XPn+1 = XPn ∨ XPn),
(XQ1 = XPN ∨ XPN ), (XQn+1 = XQn ∨ XQn) | n < N}

We find that 〈XPN ,E
PN (φ)〉 and 〈Y, (νY = Y∨Y)〉 are bisimilar, which demonstrates a

reduction of a factor 2N. As the labelled transition system can be scaled to arbitrary
size, this demonstrates that bisimilarity for equation systems can be arbitrarily
more effective.

7. APPLICATION

Equation systems that are not immediately in simple form can be obtained through
the reduction of process equivalence checking problems such as the branching bisim-
ulation problem, see e.g. [Chen et al. 2007], and the more involved model checking
problems. As a slightly simplified example of the latter, we analyse an unreliable
channel using µ-calculus model checking. The channel can read messages from its
environment through the r action, and send or lose these next through the s action
and the l action, respectively. Losing a message happens because of noise affecting
the reliability of the channel; we model this using an internal action i preceding
action l. In case the message is lost, subsequent attempts are made to send the
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message until this finally succeeds. The labelled transition system, modelling this
system is given below.

s0 s1 s2

r

s

i

l

Suppose we wish to verify for which states it holds whether along all paths con-
sisting of reading and sending actions, it is infinitely often possible to potentially
never perform a send action. Intuitively, this should be the case in all states: from
states s0 and s1, there is a finite path leading to state s1, which can subsequently
produce the infinite path (s1 s2)ω, along which the send action does not occur. For
state s2, we observe that there is no path consisting of reading and sending actions,
so the property holds vacuously in s2. We formalise this problem as follows:1

φ ≡ νX̃. µỸ . (([{r, s}]X̃ ∧ (νZ̃. 〈s〉Z̃)) ∨ [{r, s}]Ỹ)

Verifying which states in the labelled transition system satisfy φ is answered by
solving the below equation system. Note that the equation system was obtained
through Definition 2.8. The solution to Xsi answers whether si |= φ.

(νXs0 = Ys0)
(νXs1 = Ys1)
(νXs2 = Ys2)
(µYs0 = ((Xs1 ∧ Xs1) ∧ Zs0) ∨ ((Ys1 ∧ Ys1) ∨ (Ys1 ∧ Ys1)))
(µYs1 = ((Xs0 ∧ Xs0) ∧ Zs1) ∨ ((Ys0 ∧ Ys0) ∨ (Ys0 ∧ Ys0)))
(µYs2 = (true ∧ Zs2) ∨ true)
(νZs0 = Zs1 ∨ Zs1)
(νZs1 = Zs2 ∨ Zs2)
(νZs2 = Zs1 ∨ Zs1)

An answer to the global model checking problem would be encoded by the structure
graph 〈Xs0 ∧Xs1 ∧Xs1 ,E

L(φ)〉. We here only depict the structure graph encoding the
local model checking problem s0 |= φ, encoded by the structure graph 〈Xs0 ,E

L(φ)〉,
which has initial vertex t1. Note that the ranked vertices ti originate from the i-th
equation in the equation system. Likewise, the unranked vertices ui originate from
the right-hand side of the i-th equation.

1Alternative phrasings are possible, but this one nicely projects onto an equation system with
non-trivial right-hand sides, clearly illustrating the theory outlined in the previous sections in an

example of manageable proportions.
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t1 2t4 H 1

u4 N

t5 H 1

t2 2

u5 N

t7 0

t8 0 t9 0

Observe that we have t1 ↔ t2, t7 ↔ t8 ↔ t9, t4 ↔ t5 and u4 ↔ u5. Minimising the
above structure graph with respect to bisimulation leads to the structure graph
depicted below:

t1/↔ 2 t4/↔ H 1 u2/↔ N t7/↔ 0

Note that the structure graph is BESsy, and, hence, admits a translation back to
an equation system. Using the translation provided in Definition 3.10 results in the
following equation system:

(νXt1/↔ = Xt4/↔ )

(µXt4/↔ = (Xt7/↔ ∧ (Xt1/↔ ∧ Xt1/↔ )) ∨ (Xt4/↔ ∨ Xt4/↔ ))

(νXt7/↔ = Xt7/↔ )

Answering the verification problem s0 |= φ can thus be achieved by solving 3 equa-
tions rather than the original 9 equations. Using standard algorithms for solving
equation systems, one quickly finds that all equations of the minimised equation
system (and thereby all of the equations from the original equation system they
represent) have true as their solutions. Note that the respective sizes of the struc-
ture graphs underlying the required equations in the original equation systems are
9 before minimisation and 4 after minimisation, which is almost a 55% gain. Such
gains (and larger) appear to be typical in this setting (see also [Keiren and Willemse
2009]), and often surpass those in the setting of labelled transition systems. Similar
gains are found for the global model checking problem. Observe, moreover, that
the original labelled transition system already is minimal, demonstrating once more
that the minimisation of an equation system can be more effective than minimising
the original labelled transition system.

8. CLOSING REMARKS

Summary. We presented a set of deduction rules for deriving structure graphs
from proposition formulae and Boolean equation systems, following the regime
of [Plotkin 2004]. In defining these rules, we focused on simplicity. We carefully
selected a small set of computationally cheap logical equivalences that we wished to
be reflected by bisimilarity in our structure graphs, and subsequently showed that
we met these goals.
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Structure graphs generalise the dependency graphs of e.g. [Mader 1997; Keinänen
2006]. The latter formalism is incapable of capturing all the syntactic riches of
Boolean equation systems, and is only suited for a subset of closed equation systems
in simple form. A question, put forward in [Keiren and Willemse 2009], is how these
restrictions affect the power of reduction of strong bisimulation. In Section 4, we
showed that these restrictions are in fact beneficial to the identifying power of
bisimilarity. This result follows immediately from the meta-theory for structured
operational rules, see e.g. [Mousavi et al. 2005]. We furthermore proved that also
in our richer setting, bisimulation minimisation of a structure graph, induced by an
equation system, preserves and reflects the solution to the original equation system.
This generalises [Keiren and Willemse 2009, Theorem 1] for dependency graphs.

Beyond the aforementioned results, we studied the connection between bisimi-
larity for labelled transition systems, the µ-calculus model checking problem and
bisimilarity for structure graphs. In Section 6, we showed that bisimulation minimi-
sation of a structure graph (associated to an equation system encoding an arbitrary
model checking problem on an arbitrary labelled transition system) is at least as
effective as bisimulation minimisation of the labelled transition system prior to the
encoding. This relation even holds when bisimilarity is combined with safe abstrac-
tions for labelled transition systems. We moreover show that this relation is strict
through an example formula φ and a labelled transition system L of 2N (N > 1)
states that is already minimal (even when considering safe abstractions with respect
to φ), whereas the structure graph induced by the equation system encoding the
model checking problem can be reduced by a factor 2N. These results provide the
theoretical underpinning for the huge reductions observed in [Keiren and Willemse
2009]. Reducing a labelled transition system (if available explicitly), prior to en-
coding the verification problem as a Boolean equation system, can still be useful,
as the encoding is proportional in the size of the labelled transition system.

Outlook. The structure graphs that we considered in this paper are of both the-
oretical and practical significance. They generalise various graph-based models,
including the aforementioned dependency graphs, but also Parity Games [Zielonka
1998], and there are strong links between our structure graphs and Switching
Graphs [Groote and Ploeger 2009]. Given these links, a game-based characteri-
sation of the concept of solution for equation systems, stated in terms of our choice
functions and structure graphs is open for investigation. In general, we consider
studying equivalences weaker than bisimilarity for structure graphs to be worth-
while. For instance, it is not immediately clear whether the idempotence-identifying
bisimilarity of [Keiren and Willemse 2009], which weakens some of the requirements
of strong bisimilarity while preserving and reflecting the solution of the equation
system, carries over to structure graphs without significant modifications. Fur-
thermore, it would be very interesting to study variations of stuttering equivalence
in this context, as it is one of the few equivalence relations that allow for good
compression at favourable computational complexities.
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Electronic Notes in Theoretical Computer Science, vol. 18. 92–107.

Schewe, S. 2007. Solving parity games in big steps. In Proceedings of FSTTCS’07, New Delhi,

India, V. Arvind and S. Prasad, Eds. Lecture Notes in Computer Science, vol. 4855. Springer,
449–460.

Stevens, P. and Stirling, C. 1998. Practical model checking using games. In Proceedings of

TACAS’98, Lisbon, Portugal, B. Steffen, Ed. Lecture Notes in Computer Science, vol. 1384.
Springer, 85–101.

Stirling, C. 1997. Bisimulation, model checking and other games. Notes for Mathfit Instructional

Meeting on Games and Computation. University of Edinburgh.

Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of

Mathematics 5, 2, 285–309.

Willemse, T. A. C. 2010. Consistent correlations for parameterised boolean equation systems

with applications in correctness proofs for manipulations. In Proceedings of CONCUR 2010,

Paris, France, P. Gastin and F. Laroussinie, Eds. Lecture Notes in Computer Science, vol. 6269.
Springer, 584–598.

Zielonka, W. 1998. Infinite games on finitely coloured graphs with applications to automata on

infinite trees. Theoretical Computer Science 200, 1-2, 135 – 183.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2011.



36 · Keiren, Reniers & Willemse

A. DETAILED PROOFS AND ADDITIONAL LEMMATA

Lemma A.1. Let f , g be formulae, E a BES, and η an arbitrary environment,
then we have the following semantic equivalences:

[[ϕ(〈 f , E〉) ∧ ϕ(〈g, E〉)]]η = [[ϕ(〈 f ∧ g, E〉)]]η
[[ϕ(〈 f , E〉) ∨ ϕ(〈g, E〉)]]η = [[ϕ(〈 f ∨ g, E〉)]]η

Proof. We prove the first statement. Proof of the second statement is com-
pletely symmetric.

We first prove the implication [[ϕ(〈 f ∧ g, E〉)]]η⇒ [[ϕ(〈 f , E〉) ∧ ϕ(〈g, E〉)]]η. We use
induction on the structure of ϕ(〈 f ∧ g, E〉):

—case ϕ(〈 f ∧ g, E〉) =
d
{ϕ(u′) | 〈 f ∧ g, E〉 → u′}. It follows that d(〈 f ∧ g, E〉) = N

and 〈 f ∧ g, E〉 6∈ dom(r). As d(〈 f ∧ g, E〉) = N and 〈 f ∧ g, E〉 is BESsy, there must
be at least one u′ such that 〈 f ∧ g, E〉 → u′.
We need to show that for each conjunct u′ ∈ {ϕ(u′′) | 〈 f ∧ g, E〉 → u′′} either:

—u′ ∈ {ϕ(u′′) | 〈 f , E〉 → u′′}, or
—u′ ∈ {ϕ(u′′) | 〈g, E〉 → u′′}, or
—u′ = ϕ(〈 f , E〉), or
—u′ = ϕ(〈g, E〉).
Let v = ϕ(u′) be an arbitrary conjunct in {ϕ(u′′) | 〈 f ∧ g, E〉 → u′′}. So we
know 〈 f ∧ g, E〉 → u′. We apply case distinction on the inference rules that can
introduce this edge.

—〈 f ∧ g, E〉 → u′ is introduced through rule (7). Then we may assume that
d(〈 f , E〉) = N, 〈 f , E〉 6∈ dom(r) and 〈 f , E〉 → u′. According to the definition
of ϕ we find that ϕ(〈 f , E〉) =

d
{ϕ(u′′) | 〈 f , E〉 → u′′}. Hence by induction we

find that v is a conjunct of ϕ(〈 f , E〉). As d(〈 f , E〉) = N, every conjunct of this
formula is also a conjunct of ϕ(〈 f ∧ g, E〉).

—〈 f ∧ g, E〉 → u′ is introduced through rule (8). This case is analogous to the
previous case.

—〈 f ∧ g, E〉 → u′ is introduced through rule (11). We may assume that ¬〈 f , E〉N.
Therefore, u′ = 〈 f , E〉, and the corresponding formula is ϕ(〈 f , E〉).

—The cases where 〈 f ∧ g, E〉 → u′ is introduced through rules (12), (15) or (16)
are analogous to the previous case.

—case ϕ(〈 f ∧ g, E〉) =
⊔
{ϕ(u′) | 〈 f ∧ g, E〉 → u′}. According to rule (5) it must be

the case that 〈 f ∧ g, E〉N. According to BESsyness then d(〈 f ∧ g, E〉) 6= H, hence
ϕ(〈 f ∧ g, E〉) 6=

⊔
{ϕ(u′) | 〈 f ∧ g, E〉 → u′}, hence this case cannot apply.

—the cases where ϕ(〈 f ∧ g, E〉) ∈ {true, false, X} are analogous to the previous case.

—case ϕ(〈 f ∧g, E〉) = X〈 f∧g,E〉. Appealing to rule (5) it must be the case that ϕ(〈 f ∧
g, E〉)N. Furthermore we know 〈 f ∧ g, E〉 ∈ dom(r). According to the operational
rules all ranked terms are of the form 〈Y, E〉, for some Y. This contradicts the
assumption that the term we are considering is 〈 f ∧ g, E〉.

The reverse case, showing that [[ϕ(〈 f ∧ g, E〉)]]η ⇐ [[ϕ(〈 f , E〉) ∧ ϕ(〈g, E〉)]]η com-
mences by induction on the structure of ϕ(〈 f , E〉) and ϕ(〈g, E〉). We show that each
conjunct of ϕ(〈 f , E〉) is also a conjunct of ϕ(〈 f ∧ g, E〉). The case for ϕ(〈g, E〉) is
completely analogous.
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—case ϕ(〈 f , E〉) =
d
{ϕ(u′) | 〈 f , E〉 → u′}. In this case we know that d(〈 f , E〉) = N,

and 〈 f , E〉 6∈ dom(r). Let 〈 f , E〉 → u′, so ϕ(u′) is a top level conjunct of ϕ(〈 f , E〉).
From rule (7) it follows immediately that 〈 f ∧ g, E〉 → u′, and d(〈 f ∧ g, E〉) = N
according to (5), hence ϕ(〈 f ∧ g, E〉) =

d
{ϕ(u′) | 〈 f ∧ g, E〉 → u′}, and ϕ(u′) is a

conjunct of ϕ(〈 f ∧ g, E〉).
—ϕ(〈 f , E〉) =

⊔
{ϕ(u′) | 〈 f , E〉 → u′}. So we know that d(〈 f , E〉) = H and 〈 f , E〉 6∈

dom(r). Observe that the only conjunct of ϕ(〈 f , E〉) is ϕ(〈 f , E〉) itself. We show
that ϕ(〈 f , E〉) is a conjunct of ϕ(〈 f ∧ g, E〉). According to rule (11), 〈 f ∧ g, E〉 →
〈 f , E〉. Furthermore d(〈 f ∧ g, E〉) = N according to (5) and 〈 f ∧ g, E〉 6∈ dom(r)
according to (2), hence ϕ(〈 f ∧ g, E〉) =

d
{ϕ(u′) | 〈 f ∧ g, E〉 → u′}, and ϕ(〈 f , E〉)

is a conjunct of ϕ(〈 f ∧ g, E〉).
—cases ϕ(〈 f , E〉) ∈ {true, false, X} follow a similar line of reasoning as the previous

case.

—ϕ(〈 f , E〉) = X〈 f ,E〉, where 〈 f , E〉 ∈ dom(r). This again follows a similar line of
reasoning. We use the observation that the only edge that is generated from
〈 f ∧ g, E〉 induced by 〈 f , E〉 is the edge 〈 f ∧ g, E〉 → 〈 f , E〉 because f is ranked,
according to (15), and in case also d(〈 f , E〉) 6∈ {N,H} the same edge is generated
(according to rule (11)).

Lemma A.2. Let E be a BES, η an environment, such that η(Y) = η(X〈Y,E〉) for
all Y ∈ bnd(E). Let f be a formula, such that occ( f ) ⊆ {Y | X〈Y,E〉 ∈ bnd(β(〈 f , E〉))∪
free(β(〈 f , E〉))}. Then it holds that [[ f ]]η = [[ϕ(〈 f , E〉)]]η

Proof. Let E be this BES, and f a formula. Assume that occ( f ) ⊆ {Y | X〈Y,E〉 ∈
bnd(β(〈 f , E〉)) ∪ free(β(〈 f , E〉))}. We show that [[ f ]]η = [[ϕ(〈 f , E〉)]]η by induction on
the structure of f .

— f = true. By definition of ϕ, [[ϕ(〈true, E〉)]]η = [[true]]η.

— f = false. Analogous to the previous case.

— f = Y. We distinguish two cases, either Y is bound, or Y is free:

—Y is bound, i.e. X〈Y,E〉 ∈ bnd(β(〈 f , E〉)). We derive:

[[ϕ(〈Y, E〉)]]η
= {X〈Y,E〉 ∈ β(〈 f , E〉), hence 〈Y, E〉 ∈ dom(r), use definition of ϕ}

[[X〈Y,E〉]]η
= {Semantics of BES}

η(X〈Y,E〉)
= {Assumption η(X〈Y,E〉) = η(Y)}

η(Y)
= {Semantics of BES}

[[Y]]η

—Y ∈ free(β(〈 f , E〉)). This case is easy, as Y ∈ free(β(〈 f , E〉)), also↗〈Y,E〉 Y, hence
using the definition of ϕ we immediately find [[ϕ(〈Y, E〉)]]η = [[Y]]η.
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— f = g ∧ g′. Based on the SOS we know that d(〈g ∧ g′, E〉) = N. As induction
hypothesis we assume that the lemma holds for all subformulae. We derive:

[[ϕ(〈g ∧ g′, E〉)]]η
= {Lemma A.1}

[[ϕ(〈g, E〉) ∧ ϕ(〈g′, E〉)]]η
= {Semantics of BES}

[[ϕ(〈g, E〉)]]η ∧ [[ϕ(〈g′, E〉)]]η
= {Induction hypothesis}

[[g]]η ∧ [[g′]]η
= {Semantics of BES}

[[g ∧ g′]]η

ll

— f = g ∨ g′. Analogous to the previous case.

Lemma A.3. Let E be a BES, (σX = f ) ∈ E. Then it holds that ϕ(〈 f , E〉) =
rhs(〈X, E〉).

Proof. Assume that (σX = f ) ∈ E . Observe that 〈X, E〉 ∈ dom(r). We show
this lemma using case distinction on rules for rhs.

—d(〈X, E〉) = N. Then according to rule (19) also d(〈 f , E〉) = N, and furthermore
〈 f , E〉 6∈ dom(r). We derive:

rhs(〈X, E〉)
= {Definition of rhs}d

{ϕ(u′) | 〈X, E〉 → u′}
= {d(〈 f , E〉) = N and 〈X, E〉 6∈ dom(r), hence 〈X, E〉 → u′ if and only if 〈 f , E〉 → u′ according to rule (23)}d

{ϕ(u′) | 〈 f , E〉 → u′}
= {Definition of ϕ}

ϕ(〈 f , E〉)

—d(〈X, E〉) = H. Analogous to the previous case.

—d(〈X, E〉) 6= N and d(〈X, E〉) 6= H. We know that there is exactly one u′ such that
〈X, E〉 → u′, hence using rule (21) we find 〈X, E〉 → 〈 f , E〉. By definition of rhs,
rhs(〈X, E〉) = ϕ(〈 f , E〉).

Proposition A.4 (Proposition 3.11 in the main text). Let E be a BES
such that σY = f ∈ E. Then for all environments η for which η(Y) = η(X〈Y,E〉),
[[ f ]]η = [[rhs(〈Y, E〉)]]η.

Proof. We prove this using a distinction on the cases of rhs(〈Y, E〉).
—case d(〈Y, E〉) = N). We derive:

[[rhs(〈Y, E〉)]]η
= {Lemma A.3, σY = f ∈ E}

[[ϕ(〈 f , E〉)]]η
= {Lemma A.2}

[[ f ]]η

ACM Transactions on Computational Logic, Vol. V, No. N, January 2011.



Structural Analysis of Boolean Equation Systems · 39

—The cases where d(〈Y, E〉) = H and d(〈Y, E〉) 6∈ {N,H} are completely analogous.
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